It is susceptible to attack by many insect-pests, and more severely affected by the fruit and shoot borer (FSB). These insects effectively damage (60–70%) the crop even following the average 4.6 kg of insecticides and pesticides per hectare [2]. Therefore, to control the indiscriminate use of insecticides, the transgenic approach is being opted that is eco-friendly and shows promise to control the FSB infecting brinjal. The use of insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) in the improvement of crop productivity via transgenic crop (Bt crop) VRT752271 mouse is being promoted in most cases. However, the potential risk associated with the impact of
transgenic crops on non-target microorganisms and flora and fauna in the environment, is still a matter of concern. Bt crops have the potential to alter the microbial community dynamics in the soil agro-ecosystem
owing to the release of toxic Cry proteins into the soil via root exudates [3], and through decomposition of the crop residues [4]. The available reports, however, are not consistent regarding the nature of interaction of transgenic crops with the native microbial community. Icoz and Stotzky [5] presented a comprehensive analysis of the fate and effect of Bt crops in soil ecosystem and emphasized selleck screening library for the risk assessment studies of transgenic crops. Phylogenetically, actinomycetes are the member of taxa under high G + C sub-division of the Gram positive Sotrastaurin bacteria [6]. Apart from bacteria and fungi, actinomycetes are an important microbial group known to be actively involved in degradation of complex organic materials in soils and contribute to the biogeochemical cycle [7]. The presence of Micromonospora in soils contributes to the production
of secondary metabolite (antibiotics) like anthraquinones [8], and Arthrobacter globiformis degrades substituted phenyl urea in soil [9]. Nakamurella group are known for the production of catalase and storing polysaccharides [10]. Thermomonospora, common to decaying organic (-)-p-Bromotetramisole Oxalate matter, are known for plant cell degradation [11]. Frankia is widely known for N2 fixation [12], Sphaerisporangium album in starch hydrolysis and nitrate reduction in soils [13], Agromyces sp. degrades organophosphate compounds via phosphonoacetate metabolism through catabolite repression by glucose [14]. Janibacter in rhizospheric soils, are widely known to degrade 1, 1-dichloro-2, 2- bis (4-chlorophenyl) ethylene (DDE) [15], while Streptomyces for the production of chitinase as well as antibiotics [16]. These studies suggest that most of the representative genera of actinomycetes in the soil, contribute to maintenance of the soil fertility. Most studies on transgenic crops have been carried out on cotton, corn, tomato, papaya, rice, etc., with emphasis on protozoal, bacterial and fungal communities [5].