(C) 2014 published by Frontline Medical Communications”
“Morphological studies of the gastrointestinal tract of blue-and-yellow macaws (Ara ararauna) are scarce. In view of the paucity of information regarding the digestive tract of macaws, this study aims to describe the gross anatomical features (oesophagus to cloaca) as part of a broad study of the gastrointestinal tract (GIT) of these birds. Three animals (two males and one female) adult macaws P005091 clinical trial were anatomically dissected from the oropharynx to the cloaca to expose the GIT. The oesophagus was identified as a muscle-membranous tube continuous with the crop, which was intimately attached to the skin. The internal
longitudinal folds of the cervical oesophagus were sparser cranial to the crop and less evident compared to the portion caudal to the crop. The duodenum began in the pylorus and was grey-coloured exhibiting a large lumen. The jejunum was formed by loops in a spiral-fashion model supported by mesojejunum. The ileum was also composed by small loops and was continuous with the colo-rectum
forming the large intestine, because the caeca were absent. The large intestine was short, median in position, suspended in the dorsal wall of the abdominal cavity by mesentery and ended in the cloaca. The GIT was similar to the basic patterns in birds, in general, and also presented new unreported morphological data that might be important when studying nutrition and health of the macaws.”
“Intramyocellular triacylglycerol (IMTG) is emerging as an important energy fuel source during muscle contraction and TH-302 solubility dmso are adaptively increased in response to exercise, without adverse physiological effects. Paradoxically, elevated IMTG content in obese and type 2 diabetics has been linked to insulin resistance, highlighting the importance of IMTG pools in physiology SN-38 purchase and pathology. Two separate views suggest that IMTG dynamics are determinant for skeletal
muscle fat oxidation, and that disruption of IMTG dynamics facilitates the accumulation of lipotoxic intermediates such as diacylglycerols and ceramides that interfere with insulin signaling. Thus, understanding the factors that control IMTG dynamics is crucial. Here we discuss recent literature describing the regulation of IMTG pools with a particular emphasis on lipases and lipid droplet (LD)-associated proteins.”
“Prohormone convertases (PCs) 1 and 2 are the primary endoproteases involved in the post-translational processing of proThyrotropin Releasing Hormone (proTRH) to give rise to TRH and other proposed biologically active non-TRH peptides. Previous evidence suggests that PC1 is responsible for most proTRH cleavage events. Here, we used the PC1 and PC2 knockout (KO) mouse models to examine the effects of PC1 or PC2 loss on proTRH processing.