Bacterial cultures were diluted in PBS to equal the McFarland No

Bacterial cultures were diluted in PBS to equal the McFarland No. 0.5 standard and the final inoculum Epigenetic Reader Domain inhibitor was prepared by diluting the bacterial suspension at 1:100. Aliquots

of 0.1 mL were transferred to each well of a 96-well plate that contained 0.1 mL of each compound at concentrations prepared from 2-fold serial dilutions in 7H9/OADC medium. The inoculated plates were incubated at 37°C until growth in the agent-free control-well was evident (2-3 days). The MIC was defined as the lowest concentration of compound that inhibited visible growth. Semi-automated fluorometric method The assessment of accumulation and extrusion of EtBr on a real-time basis by M. smegmatis strains wild-type mc2155, SMR5, porin mutants, MN01 and ML10 and efflux mutants XZL1675 and XZL1720

(Table 1) was performed using the semi-automated fluorometric method, as previously described [25–27]. (i) Accumulation assay M. smegmatis strains were grown in 5 mL of 7H9/OADC medium at 37°C until an O.D.600 of 0.8. Cultures were centrifuged at 13000 rpm for 3 minutes, the supernatant discarded and the pellet washed in PBS (pH 7.4). The O.D.600 was adjusted to 0.4 with PBS and glucose was added at final concentration of 0.4%. Aliquots of 0.095 mL of bacterial suspension were distributed to 0.2 mL PCR microtubes and EtBr was added at concentrations that ranged from 0.25 to 8 mg/L. Fluorescence was measured in the Rotor-Gene™ 3000 (Corbett Research, Sydney, Australia), Akt inhibitor using the 530 nm band-pass and the 585 nm high-pass filters as the excitation and detection wavelengths, respectively. Fluorescence data was acquired every 60 seconds for 60 minutes at 37°C. The effect of chlorpromazine, thioridazine and verapamil on the accumulation of EtBr was determined by adding 0.005 mL of each compound to aliquots of 0.095 mL of EtBr-containing bacterial suspension previously distributed to 0.2 mL PCR microtubes. Fluorescence was measured every 60 seconds for 60 minutes at 37°C in the Rotor-Gene™ 3000. Each inhibitor was used at ½ the MIC in order to not compromise

the cellular viability (as mafosfamide confirmed by CFUs counting). (ii) Efflux assay Mycobacteria were exposed to conditions that promote maximum accumulation of EtBr: EtBr at ½ MIC for each strain; no glucose; presence of the efflux inhibitor that caused maximum accumulation, in this case verapamil; and incubation at 25°C [25–27]. The EtBr loaded cells were centrifuged at 13000 rpm for 3 minutes and resuspended in selleck kinase inhibitor EtBr-free PBS containing 0.4% glucose. After adjusting the O.D.600 to 0.4, aliquots of 0.095 mL were transferred to 0.2 mL microtubes. Fluorescence was measured in the Rotor-Gene™ 3000 as described for the accumulation assay. Efflux activity was quantified by comparing the fluorescence data obtained under conditions that promote efflux (presence of glucose and absence of efflux inhibitor) with the data from the control in which the mycobacteria are under conditions of no efflux (presence of an inhibitor and no energy source).

Comments are closed.