The identification of Cpne8 and Hectd2 highlight Z-VAD-FMK clinical trial the value of HS mice for linkage mapping but they can also be used for association studies, although the existence of large haplotype blocks precludes single gene resolution. This is illustrated by a study to validate two candidates, RARB (retinoic acid receptor beta) and STMN2 (Stathmin-like 2), originally identified as part of a vCJD GWAS [ 7 and 31••]. Statistical analysis showed a modest association for Stmn2 but a highly significant association for the Rarb locus [ 31••]. Although individual loci have been screened using the HS mice
their full potential has not yet been exploited. The advent of high density SNP arrays, similar to those available for the human genome, means that GWAS and copy number variation analysis is p38 protein kinase now possible. Combined with the availability of genomic sequence for the HS parental strains, this should make candidate gene discovery and validation easier. The use of high density microarrays to look at differential expression of mRNA transcripts during disease progression has identified hundreds of differentially
expressed genes and more importantly highlighted gene networks associated with the key cellular processes [33 and 34]. These studies provide a global view of disease associated changes but are difficult to interpret and many of the pathways may be secondary effects rather than key drivers of the process. We have taken the alternative approach of looking for differential expression between inbred lines of mice with different incubation times. We used uninfected mice and to enrich for relevant genes we looked for a correlation between expression level and incubation time across five lines of mice [35]. Five potential candidates were identified including Hspa13 (Stch), a member of the Hsp70 family of ATPase heat shock proteins. To functionally test Hspa13 we generated an overexpressing transgenic mouse and following infection with three different prion strains showed highly significant reductions O-methylated flavonoid in incubation time. The precise
function of Hspa13 is unknown but it has an intra-organellar localisation and is induced by Ca2+ release suggesting a role in ER stress and the unfolded protein response (UPR) [ 36]. It has also been associated with TRAIL-induced apoptosis [ 37]. Prion diseases and other neurodegenerative disorders share many common features including familial disease as well as sporadic, aggregation of misfolded protein and neuronal loss. Indeed, there is now evidence that cell to cell spread in these diseases occurs through a ‘prion-like’ mechanism of seeded protein polymerisation [38 and 39]. The similarities between these diseases had led to causative genes in one disease being tested for an effect in prion disease.