The first observation was that the rate of acetate incorporation

The first observation was that the rate of acetate incorporation was significantly reduced, but not eliminated, in glycerol-deprived cells (Figure 4A). There was some residual synthesis of PtdGro, but the most pronounced effect was the accumulation of non-esterified fatty acids in the neutral lipid fraction (Figure 4B & 4C). Thus, the

fatty acids synthesized in glycerol deprived cells were not incorporated into phospholipid, but rather accumulated as fatty acids. These fatty acids were identified by gas chromatography following their isolation by preparative thin-layer chromatography from glycerol-depleted ATM/ATR inhibitor cells. The free fatty acid pool consisted of longer chain 19:0 (45%) and 21:0 (48%) fatty acids (Figure 4C,

inset), which were not normally abundant in S. aureus phospholipids. These data showed that fatty acid synthesis continued at a diminished rate in glycerol-deprived cells resulting in the accumulation of abnormally long chain length (19:0 + 21:0) fatty acids as opposed to the 15:0 + 17:0 fatty acids found BIIB057 in the phospholipids of normally growing cells [14]. The longer-chain fatty acids arose from the continued action of the FabF elongation enzyme in the absence of the utilization of the acyl-ACP by the PlsX/PlsY pathway. Figure 4 Synthesis of lipid classes from [ 14 C]acetate after blocking phospholipid synthesis at the PlsY step. (A) Strain PDJ28 (ΔgpsA) was grown to an OD600 of 0.5, the culture was harvested, washed and split into media either with or without the glycerol supplement. The cells were then labeled with [14C]acetate for 30 min, the lipids were extracted and the total amount of label incorporated into cellular lipids was determined. The extracted lipids were analyzed by thin-layer chromatography on Silica Gel G KU57788 layers developed with chloroform:methanol:acetic acid (98/2/1, v/v/v). The distribution of radioactivity was determined using a Bioscan Imaging detector for the cultures containing the glycerol supplement (B) and the glycerol-deprived

cultures (C). The composition of the free fatty acids that accumulated in the glycerol starved cultures was determined by preparative thin-layer chromatography to isolate the fatty acids, followed by the Vorinostat price preparation of methyl esters and quantitative analysis by gas–liquid chromatography as described in Methods. The weight percent of the two major fatty acids detected is shown in the figure. All other fatty acids were present at less than 1% of the total. Next, the time course for the continued synthesis of lipids following glycerol withdrawal was determined (Figure 5). New phospholipid synthesis was noted at the first time point following glycerol deprivation and was attributed to the utilization of intracellular glycerol-PO4 that remained in the cells following the washing procedure. After this initial phase, phospholipid synthesis ceased.

Comments are closed.