Such e-health applications and wireless medical devices can significantly improve the quality of healthcare and promote evidence-based medicine.Later, the need became apparent to provide services able to interconnect all the fragmented available e-health and automation systems, in order to realize integrated platforms facilitating time-critical care in case of an emergency. Additionally, computerized AmI environments are extremely data-intensive, resulting in enormous databases. For example, it is generally assumed that every patient in an intensive care unit generates around 16.000 different values on a daily base. The amount of data and the heterogeneity calls for automated data processing. AmI environments should be able to facilitate the abstraction of the relevant information and support the physicians through smart medical decision support services.
In addition, the optimal use and visualization of the medical data in gaining valuable insights into the patients condition has been an important research topic in recent years. It is expected that in future AmI environments, hundreds of medical support services will be active simultaneously in order to optimize the care of critically ill patients. With an increased deployment of these services, reusing existing services as building blocks to create new ones not only offers more flexibility to the developer, but accelerates also the design process, because the existing parts are already extensively validated. In this direction, the AmI framework presented in this paper is designed based on the principles of service-oriented architectures (SOAs), wherein all components are implemented as web services.
SOAs support a generic communication system in which services can easily be plugged in. AmI provides efficient management and data subscription for medical support services. Medical measurements from laboratories or monitors are processed by the AmI framework, and depending on the priority, the results are sent to the physicians smart phone. The novelty of the developed AmI framework proposed in this paper is: (i) the personalized monitoring of chronic (heart) disease patients able to detect the patient’s health status Anacetrapib and risk stage based on the results from the well-established Framingham Heart Study [4]; (ii) the intelligent alerting of the dedicated physician in case of an emergency through the automatic composition of medical service workflows, gathering all the required data; (iii) the dynamic adaptation of the full vital sign monitoring environment on any available device located in close proximity to the physician or even his/her smart phone.
The intelligence of such a service lies in the ontology-based modeling of the patient’s and physician’s context and the available medical devices, which will be further elaborated in Section 5.