nov. within the genus Enterobacter. A total of 45 nucleotide
sequences (with 56 variable positions from a total of 495) were used, scoring the arithmetic means of log likelihood -3536.24. The nodes in terminal branches supported by ≥ 50% of the ML bootstrap analysis and homogeneous Bayesian (BI) posterior CHIR-99021 mw probabilities are shown. The tree is drawn to scale with bar indicating 0.06% substitutions per nucleotide position. Sequences from Pantoea genus were used as outgroup. (PDF 60 KB) Additional file 3: Table S1: Fatty acid profiles of strains REICA_142T, REICA_084, REICA_191, REICA_082T, REICA_032, REICA_211 and type strains of closely related species of the genus Enterobacter measured by gas chromatography. (DOCX 31 KB) Additional file 1: Figure S1: Maximum-likelihood tree based on nearly complete 16S rRNA gene sequences showing the phylogenetic position of Enterobacter oryziphilus sp. nov. and Enterobacter {Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleck Anti-infection Compound Library|Selleck Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Selleckchem Anti-infection Compound Library|Selleckchem Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|Anti-infection Compound Library|Antiinfection Compound Library|buy Anti-infection Compound Library|Anti-infection Compound Library ic50|Anti-infection Compound Library price|Anti-infection Compound Library cost|Anti-infection Compound Library solubility dmso|Anti-infection Compound Library purchase|Anti-infection Compound Library manufacturer|Anti-infection Compound Library research buy|Anti-infection Compound Library order|Anti-infection Compound Library mouse|Anti-infection Compound Library chemical structure|Anti-infection Compound Library mw|Anti-infection Compound Library molecular weight|Anti-infection Compound Library datasheet|Anti-infection Compound Library supplier|Anti-infection Compound Library in vitro|Anti-infection Compound Library cell line|Anti-infection Compound Library concentration|Anti-infection Compound Library nmr|Anti-infection Compound Library in vivo|Anti-infection Compound Library clinical trial|Anti-infection Compound Library cell assay|Anti-infection Compound Library screening|Anti-infection Compound Library high throughput|buy Antiinfection Compound Library|Antiinfection Compound Library ic50|Antiinfection Compound Library price|Antiinfection Compound Library cost|Antiinfection Compound Library solubility dmso|Antiinfection Compound Library purchase|Antiinfection Compound Library manufacturer|Antiinfection Compound Library research buy|Antiinfection Compound Library order|Antiinfection Compound Library chemical structure|Antiinfection Compound Library datasheet|Antiinfection Compound Library supplier|Antiinfection Compound Library in vitro|Antiinfection Compound Library cell line|Antiinfection Compound Library concentration|Antiinfection Compound Library clinical trial|Antiinfection Compound Library cell assay|Antiinfection Compound Library screening|Antiinfection Compound Library high throughput|Anti-infection Compound high throughput screening| oryzendophyticus sp. nov. within the genus Enterobacter. A total of 41 nucleotide sequences (with 131 variable positions from a total of 1125) were used, scoring the arithmetic means of log likelihood -3228. The nodes in terminal branches supported by ≥ 50% of the ML bootstrap analysis and homogeneous Bayesian (BI) posterior probabilities are shown. The tree
is drawn to scale with bar indicating 0.05% substitutions per nucleotide position. Sequences from Pantoea genus were used as outgroup. (PDF 59 KB) Additional file 4: Figure S3: Dendrogram derived from the fatty acid (FA) patterns showing the positions of Enterobacter oryziphilus sp. nov. and Enterobacter oryzendophyticus sp. nov. within the Enterobacteriaceae. (PDF 4 MB) References 1. Hayat R, Ali S, Amara U, Khalid HA 1077 R, Ahmed I: Soil beneficial bacteria and their role in plant growth selleck chemicals llc promotion: a review. Ann Microbiol 2010, 60:579–598.CrossRef 2. Dimkpa C, Weinand T, Asch F: Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 2009, 32:1682–94.PubMedCrossRef
3. Peng G, Zhang W, Luo H, Xie H, Lai W, Tan Z: Enterobacter oryzae sp. nov., a nitrogen-fixing bacterium isolated from the wild rice species Oryza latifolia . Int J Syst Evol Microbiol 2009, 59:1650–5.PubMed 4. Hardoim PR, Hardoim CCP, Van Overbeek LS, Van Elsas JD: Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 2012, 7:e30438.PubMedCrossRef 5. Kaga H, Mano H, Tanaka F, Watanabe A, Kaneko S, Morisaki H: Rice seeds as sources of endophytic bacteria. Microbes Environ 2009, 24:154–162.PubMedCrossRef 6. Pedrosa FO, Monteiro RA, Wassem R, Cruz LM, Ayub RA, Colauto NB, Fernandez MA, Fungaro MHP, Grisard EC, Hungria M, Madeira HMF, Nodari RO, Osaku CA, Petzl-Erler ML, Terenzi H, Vieira LGE, Steffens MBR, Weiss VA, Pereira LFP, Almeida MIM, Alves LR, Marin A, Araujo LM, Balsanelli E, Baura VA, Chubatsu LS, Faoro H, Favetti A, Friedermann G, Glienke C, et al.