In particular, urotensin II receptor appeared associated with bot

In particular, urotensin II receptor appeared associated with both large cholinergic C-boutons and standard cholinergic terminals contacting some motoneuron perikarya. Cholinergic nerve terminals from mouse cervical spinal cord were equipped with functional presynaptic Selleck Blasticidin S urotensin II receptors linked to excitation of acetylcholine release. In fact, functional experiments conducted on cervical spinal synaptosomes demonstrated a urotensin II evoked calcium-dependent increase in [(3)H]acetylcholine release pharmacologically verified as consistent with activation of urotensin II receptors. In spinal cord these actions would facilitate cholinergic transmission. These data indicate that, in addition to its role at

the neuromuscular junction, urotensin II may control motor function through the modulation of motoneuron activity within the spinal cord. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.”
“The GSK1904529A t(8;21)(q22;q22) translocation, present in similar to 5% of adult acute myeloid

leukemia (AML) cases, produces the AML1/ETO (AE) fusion protein. Dysregulation of the Pit/Oct/Unc (POU) domain-containing transcription factor POU4F1 is a recurring abnormality in t(8; 21) AML. In this study, we showed that POU4F1 overexpression is highly correlated with, but not caused by, AE. We observed that AE markedly increases the self-renewal capacity of myeloid progenitors from murine bone marrow or fetal liver and drives the expansion of these cells in liquid culture. POU4F1 is neither necessary nor sufficient for these AE-dependent properties, suggesting that it contributes to leukemia

through novel mechanisms. To identify targets of POU4F1, we performed gene expression profiling in primary mouse cells with genetically defined levels of POU4F1 and identified 140 differentially expressed genes. This PLEK2 expression signature was significantly enriched in human t(8;21) AML samples and was sufficient to cluster t(8;21) AML samples in an unsupervised hierarchical analysis. Among the most highly differentially expressed genes, half are known AML1/ETO targets, implying that the unique transcriptional signature of t(8;21) AML is, in part, attributable to POU4F1 and not AML1/ETO itself. These genes provide novel candidates for understanding the biology and developing therapeutic approaches for t(8;21) AML. Leukemia (2010) 24, 950-957; doi:10.1038/leu.2010.61; published online 8 April 2010″
“The pedunculopontine nucleus (PPN) is critically involved in brain-state transitions that promote neocortical activation. In addition, the PPN is involved in the control of several behavioral processes including locomotion, motivation and reward, but the neuronal substrates that underlie such an array of functions remain elusive. Here we analyzed the physiological properties of non-cholinergic PPN neurons in vivo across distinct brain states, and correlated these with their morphological properties after juxtacellular labeling.

Comments are closed.