2 and using the automatic baseline correction setting in the
qPCR software (sds 2.2; Applied Biosystems, CA). Differences in Ct-values for each target strain were calculated between those obtained with the universal primer set and those obtained using every other primer set on the array in order to assess primer specificity. A maximum Ct-value of 35 was used for these calculations. A total of 31 specific primer sets as well as one universal bacterial reference primer set were selected for the GULDA based on their specificity toward target bacterial microbial groups (Fig. 1). The RDP ProbeMatch tool was used to assess the binding potential of the universal primer set within the five predominant bacterial phyla of the gut separately. Visualization of amplification products by agarose PF-562271 cell line gel electrophoresis following amplification on fecal DNA template showed MG-132 order that all 31 primer sets generated single and distinct bands of the expected length (data not shown). Extracted DNA from 12 human fecal samples, representing six infants sampled 9 and 18 months, respectively,
was used as template for GULDA using the 31 validated primer sets with four technical replicas of each amplification. Following the thermocycling program, the raw fluorescence data recorded by the sds software were exported to the linregpcr program (Ramakers et al., 2003; Ruijter et al., 2009). The linregpcr software was used to perform baseline correction and calculate the mean PCR efficiency per amplicon group. This was used to calculate the initial quantities N0 (arbitrary fluorescence units) for each amplicon by the formula N0 = threshold/(), where Effmean denotes the mean PCR efficiency per amplicon, threshold is the optimal ‘cutoff’ in the exponential region, and Ct is the cycle number, where each sample exceeds this
threshold. The relative abundance of the 31 specific amplicon groups was obtained by normalization to the N0-value obtained for the universal bacterial Etoposide supplier amplicon group determined in the same array. A detection limit of 10−5 (N0,specific/N0,universal) was applied to the normalized N0-values due to qPCR analysis limitations, and the normalized N0-value was set to this value for specific amplicon groups below this detection limit to allow further analysis. The normalized N0-values (log10-transformed) obtained from each bacterial amplicon group were used as input for multivariate principal component analysis (PCA) using latentix version 2.11. Lines between the same individuals (at 9 and 18 months) were included in the PCA score plot. Fold-changes for specific amplicon groups were calculated as the (log 2) ratio of normalized abundances at 18 and 9 months. Statistical analysis was performed using the graphpad prism software (version 5.03; GraphPad Software Inc., La Jolla, CA). Indicated P-values refer to significance in Wilcoxon’s signed rank test.