1000-fold higher viral LD50. Conversely, viral load was significantly higher in the DBA/2J strain, which also mounted a hyper-inflammatory response with much stronger up-regulation of many immune response-dependent genes. As exemplified by the aforementioned studies, most work in murine models of IAV infection has focused on time points during or after established infection (1 day up to 60 days), and very little attention has been paid to the first 24 hours (h). Nevertheless, www.selleckchem.com/products/Pazopanib-Hydrochloride.html critical aspects of the host response to early steps in viral attachment
and entry could conceivably be studied during this early time window. However, due to the temporal proximity to the technical and pharmacological manipulations surrounding
the infection process, it is conceivable that both the administration of the anesthetic and the physical and physiological stress from intranasal installation of the inoculate would lead to artifactual signals that are unrelated to the virus-host interaction. We have therefore analyzed changes in pulmonary gene expression in a 5-day time course featuring Lazertinib ic50 frequent measurements in the first 24 h, comparing results obtained from mice infected with IAV or exposed to vehicle only (“mock infection”). We find effects on pulmonary gene expression that can be clearly ascribed to the anesthesia/infection procedure, which are detectable as early as 6 h post treatment and differ between the two mouse strains in terms of magnitude and temporal evolution. Methods Sample preparation Female 12-13-week-old C57BL/6J and DBA/2J mice (n = 5–8 per time point and treatment) and mouse-adapted IAV strain variant PR8_Mun (Institute of Molecular Virology, University of Muenster, Germany), which is closely related to A/Puerto Rico/8/34, were used. Mice were weighed on day 0 just before induction of anesthesia and on each subsequent day. Infections were NCT-501 concentration essentially carried PD184352 (CI-1040) out as described previously [1]. Briefly, mice were anesthetized by intra-peritoneal injection of 10 μl per g body weight of a
stock solution of 0.5 ml ketamine (50 mg/ml, Invesa Arzneimittel GmbH, Freiburg, Germany), 0.5 ml 2% xylazine hydrochloride (Bayer Health-Care, Leverkusen, Germany) and 9 ml sterile NaCl 0.9% (Delta-Select GmbH, Dreieich, Germany). For intranasal infection, a viral dose of 2 × 103 focus forming units (ffu) of PR8_Mun (propagated in embryonated chicken eggs) was administered in a total volume of 20 μl sterile phosphate-buffered saline (PBS). During the infection procedure, mice were held in the upright position and additional anesthetic was reinjected as needed. Mock treatment was identical to real anesthesia/infections except that vehicle only (sterile PBS), not containing virus, was used for intranasal instillation. Mice were killed by CO2 asphyxiation at 6, 12, 18, 24, 48, and 120 h with respect to infection or mock treatment. Untreated mice were used as t = 0 h control.