1, 1, 10 and 50 μg/mL) After 6 h DC were harvested and plated in

1, 1, 10 and 50 μg/mL). After 6 h DC were harvested and plated in a 96-well culture plate. OVA TCR transgenic T cells were isolated from DO11.10 mice and labeled with 5 μM CFSE. DCs and T cells were co-cultured in a ratio of 1:10 and harvested after 72 h. Proliferation of lymphocytes was determined by flow cytometry after staining with anti-CD4 mAbs and the clonotypic antibody KJ1-26 (anti-OVA transgenic TCR). Resident peritoneal macrophages from naive

BALB/c mice were obtained by peritoneal lavage with 2 mL ice-cold saline containing 50 u/mL heparin and cultured at a concentration of 1×106 macrophages per mL Selleckchem Antiinfection Compound Library in the presence of 10 ng/mL E. Coli LPS with a range of PI concentrations. At 24 h TNF-α concentrations were measured in the supernatant. Real-time PCR was performed as described previously 28. Total RNA was purified from DN32 cells using the Qiagen RNeasy kit (Westburg, Leusden, The Netherlands). One microgram RNA was reverse transcribed to cDNA using a mix of random hexamers (2.5 μM) and oligodT primers (20 nM). The RT reaction was performed in a total volume MLN8237 concentration of 25 μL containing 0.2 mM of each dNTP (Amersham Pharmacia BioTech, Piscataway, NJ), 200 U Moloney murine leukemia virus RT (M-MLV RT; Promega, Madison, WI), and 25 U RNAsin (Promega). Conditions for the RT reaction were 37°C for 45 min, 42°C

for 15 min and 94°C for 5 min. The cDNA was diluted to a final concentration of 8 ng/μL and stored at before −80°C. Real-time quantitative PCR was performed using an ABI Prism® 7900 Sequence Detection System (PE Applied Biosystems, CA, USA) based on specific primers and general fluorescence detection with SYBR green. Cyclophillin was used to control for sample loading and to allow normalization between samples. The expression levels relative to cyclophillin were calculated following the equation: relative expression level=2− ΔCt, whereby ΔCt=Cttarget–Ctcyclo. Specific primers were designed

across different exons resulting in these primers: IL-2 forward 5′-GGC CAC AGA ATT GAA AGA-3′, IL-2 reverse 5′-GGG CTT GTT GAG ATG ATG-3′, CYCLO forward 5′-AAC CCC ACC GTG TTC T-3′, CYCLO reverse 5′-CAT TAT GGC GTG TAA AGT CA-3′. Proteins from whole cell lysates were separated by SDS-PAGE and transferred to immobilon-P transfer membrane. Western blots were stained with antibodies to Phospho-p44/42 MAPK (ERK1/2), Phospho-p38 MAPK (Cell Signalling, Boston, MA, USA) and HRP-conjugated secondary antibody. Detection was performed with Luminescence Supersignal West Femto (Pierce, Rockford, IL, USA). Intensity of the staining was assessed using Gene-Tools (Syngene, Frederick, MD, USA). Data were expressed as percentage phosphorylated protein relative to the maximal PMA–CAI stimulation, which was set at 100%. Quantitative differences were obtained by determining phospho-proteins in cell lysates with the BD-phospho-protein-cytometric bead array (BD Biosciences) that was performed according to the manufacturers’ instructions.

Comments are closed.